5 research outputs found

    Variational Uncalibrated Photometric Stereo under General Lighting

    Get PDF
    Photometric stereo (PS) techniques nowadays remain constrained to an ideal laboratory setup where modeling and calibration of lighting is amenable. To eliminate such restrictions, we propose an efficient principled variational approach to uncalibrated PS under general illumination. To this end, the Lambertian reflectance model is approximated through a spherical harmonic expansion, which preserves the spatial invariance of the lighting. The joint recovery of shape, reflectance and illumination is then formulated as a single variational problem. There the shape estimation is carried out directly in terms of the underlying perspective depth map, thus implicitly ensuring integrability and bypassing the need for a subsequent normal integration. To tackle the resulting nonconvex problem numerically, we undertake a two-phase procedure to initialize a balloon-like perspective depth map, followed by a "lagged" block coordinate descent scheme. The experiments validate efficiency and robustness of this approach. Across a variety of evaluations, we are able to reduce the mean angular error consistently by a factor of 2-3 compared to the state-of-the-art.Comment: Haefner and Ye contributed equall

    Sublabel-Accurate Multilabeling Meets Product Label Spaces

    No full text
    International audienceFunctional lifting methods are a promising approach to determine optimal or near-optimal solutions to difficult nonconvex variational problems. Yet, they come with increased memory demands, limiting their practicability. To overcome this drawback, this paper presents a combination of two approaches designed to make liftings more scalable, namely product-space relaxations and sublabel-accurate discretizations. Our main contribution is a simple way to solve the resulting semi-infinite optimization problem with a sampling strategy. We show that despite its simplicity, our approach significantly outperforms baseline methods, in the sense that it finds solutions with lower energies given the same amount of memory. We demonstrate our empirical findings on the nonconvex optical flow and manifold-valued denoising problems

    A Cutting-Plane Method for Sublabel-Accurate Relaxation of Problems with Product Label Spaces

    No full text
    International audienceMany problems in imaging and low-level vision can be formulated as nonconvex variational problems. A promising class of approaches to tackle such problems are convex relaxation methods, which consider a lifting of the energy functional to a higher-dimensional space. However, they come with increased memory requirements due to the lifting. The present paper is an extended version of the earlier conference paper by Ye et al. (2021) which combined two recent approaches to make lifting more scalable: product-space relaxation and sublabel-accurate discretization. Furthermore, it is shown that a simple cutting-plane method can be used to solve the resulting semi-infinite optimization problem. This journal version extends the previous conference work with additional experiments, a more detailed outline of the complete algorithm and a user-friendly introduction to functional lifting methods
    corecore